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The PI3K/AKT/mTOR signaling is important for cell
proliferation, survival, and metabolism. Hyperactivation of this
pathway is one of the most common signaling abnormalities
observed in cancer and a substantial effort has recently been
made to develop molecules targeting this signaling cascade.
However, it is becoming evident that PI3K inhibitors used as
single agents do not elicit dramatic or durable responses. Given
the numerous mechanisms mediating intrinsic and acquired
resistance to these agents, hypothesis-based combinatorial
strategies are probably needed to fully exploit their antitumor
activity. In the first part of this review, we briefly dissect the
PI3K/AKT/mTOR axis and list the most advanced compounds
targeting different nodes of this cascade. The second part
focuses on what we believe to be the most promising rationale-
based therapeutic combinations with PI3K/AKT/mTOR inhibitors
in solid tumors, with special emphasis on breast cancer.

Introduction

Recent genomic sequencing efforts have allowed investigators
to decipher the molecular portraits of different types of cancer.
This has led to the identification of several actionable gene altera-
tions and paved the way toward personalized medicine.

Hyperactivation of the phosphoinositide-3-kinase (PI3K) sig-
naling cascade, either by overexpression of upstream receptor
tyrosine kinases or deregulation of several elements of the path-
way, is one of the most frequent pathway alterations in cancer.

The PI3K pathway is highly conserved among species and has
been proposed to play a key role in the regulation of multiple cel-
lular events, including growth, proliferation, cell cycle progres-
sion, and survival. Direct pharmacological inhibition of the PI3K
signaling is, therefore, an attractive clinical strategy and a number
of PI3K pathway inhibitors are currently under clinical develop-
ment. However, unlike other genomic alterations, there is no
consensus regarding P/K3CA mutations as cancer drivers. As a
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consequence, inhibition of the PI3K pathway alone does not usu-
ally translate to dramatic antitumor activity. This could poten-
tially be explained as follows:

1. The therapeutic window is narrow because normal cells
also require PI3K signaling for survival. As a consequence,
severe adverse effects (e.g., hyperglycemia) often manifest
before full inhibition of the target in tumor cells.

2. Inhibition of the PI3K pathway leads to activation of com-
pensatory pathways that can limit the sensitivity to these
agents.

In this article, we review the main inhibitors of the PI3K/
AKT/mTOR axis, focusing on those furthest along in the clinical
pipeline, and propose hypothesis-based combinations that could
potentially improve their antitcumor activity.

PI3K: Structure and Biochemistry

PI3K enzymes are classified into 3 classes (Class 1 to III)
according to their structural and biochemical properties. Because
of their role in human cancer, in this review we will discuss only
the Class I PI3Ks.

Class I PI3Ks are characterized by the presence of a catalytic
subunit (p110) that forms a heterodimeric complex with the reg-
ulatory subunit (p85). The catalytic subunit is encoded by 1 of 4
genes, PIK3CA (p110a), PIK3CB (p110B), PIK3CD (p1109),
and PIK3CG (p110vy). All of these isoforms use phosphatidylino-
sitol-(4,5)-biphosphate as a substrate. Whereas p110a and
p110pB are expressed in virtually all cell types, p1108 and p110vy
are specifically enriched in leukocytes (reviewed in’ and®).

The catalytic subunit pl110 contains a C-terminal kinase
domain that is responsible for the lipid enzymatic activity, a heli-
cal domain with a yet unknown function, a C2 domain that has
been suggested to bind the cellular membrane, a Ras-binding
domain (RBD), and an N-terminal adaptor-binding domain
(ABD) that is responsible for the interaction with the regulatory
subunit’ (Fig. 1A).

Class I enzymes are further divided into 2 groups, A and B,
based on the regulatory subunit that they interact with. The Class
IA isoforms, p110a, B, and 8, are associated with p85a or p85f
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Figure 1. Structure and biochemistry of PI3K. (A) The domains of PI3K
catalytic (p110a) and regulatory (p85a) subunits are represented. The
connecting arrow indicates the domains involved in the interaction
between these 2 subunits. BD (Binding Domain), RBD (Ras-BD), SH3 (SRC
Homology 3), PR (Proline-Rich), BH (BcR Homology), SH2 (SRC Homology
2), iISH2 (inter-SH2). (B) Phosphorylation of the phosphatidylinositol 4,5-
bisphosphate inositol ring at position 3-OH (red). Arrows indicate the
direction catalyzed by PI3K or the phosphatase PTEN.

subunits, whereas the Class IB isoform p110+y interacts with
p101 or p87.°

Alternative splicing of PIK3RI, the gene encoding p85,
gives rise to 4 different isoforms with p85a being the most
common. p85a contains 2 Src-homology 2 (SH2) domains
that bind to phosphorylated tyrosine residues of receptor
tyrosine kinases (RTKs) and an intermediate SH2 (iSH2)
domain that interacts with and inhibits the p110 subunit’
(Fig. 1A). Upon RTK stimulation, SH2 domains recognize
the phosphorylated sites and release the inhibitory effect of
the iSH2 domain on the cartalytic subunit. This allows the
pl10 subunit to exert its enzymatic activity using the abun-
dant phosphatidylinositol-(4,5)-biphosphate (PIP2) present in
the inner plasma membrane as a substrate. Biochemically,
PI3K phosphorylates the hydroxyl (-OH) group at position 3
of the inositol ring in inositol phospholipids.” This reaction
generates the second messenger phosphatidylinositol-(3,4,5)-
trisphosphate (PIP3) that triggers downstream signaling of the
pathway. This reaction is reversed by both phosphatase and
tensin homolog (PTEN, 3-phosphatase)'® and SH2 domain-
containing inositol 5’-phosphatase (SHIP, 5-phosphatase),'’
enzymes that dephosphorylate the inositol ring and convert
PIP; to PIP, or phosphatidylinositol-(3,4)-biphosphate,
respectively. Both PIP; and phosphatidylinositol-(3,4)-biphos-
phate have been shown to regulate the function of multiple
downstream effectors by recruiting them into the plasma
membrane'>"? (Fig. 1B).
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Downstream of PI3K

AKT, a Ser/Thr kinase that belongs to the AGC family of the
human kinome, is one of the most studied kinases and is consid-
ered a key output of the PI3K pathway because of its large num-
ber of substrates. There are 3 isoforms of AKT (1-3), encoded by
the respective genes AKT1, AKT2, and AKT: 3,14 Although it
remained elusive for several years, there is now some consensus
about the mechanism of activation of this kinase. Upon genera-
tion of the second messenger PIP; in the membrane by PI3K,
both phosphoinositide-dependent kinase-1 (PDK1, a constitu-
tively active kinase) and AKT are recruited to the membrane
through their pleckstrin homology domains (PHs), which recog-
nize PIP; with high affinity. The proximity of these kinases
allows PDK1 to phosphorylate AKT at residue T308 of the acti-
vation loop (T-loop).">'® Subsequently, AKT is phosphorylated
at residue S473 of the hydrophobic motif by the rapamycin-
insensitive mTOR complex 2 (mTORC2)."” This phosphoryla-
tion is considered necessary to fully activate the kinase activity of
AKT (Fig. 2); however, several reports suggest that phosphoryla-
tion at the T-loop may be sufficient to engage AKT activity on
selected substrates.'®"

Activated AKT in turn phosphorylates several substrates
involved in apoptosis and cell cycle regulation. For example,
AKT is able to phosphorylate and inhibit Bad, a member of the
Bcl2 family,20 and caspase 9,! 2 main regulators of the mito-
chondrial apoptotic pathway. It also inhibits p21<"™'** and
p275™"23 proteins that are directly involved in the inhibition of
cell cycle progression. Moreover, AKT can also prevent the
nuclear localization of the forkhead transcription factors
FOXOL1, 3, 4, and 6,>% which are involved in the transcriptional
regulation of several genes including the proapoptotic genes
CD95L, BCL2L11 (BIM), BBC3 (PUMA), and genes encoding
the cell cycle inhibitors CDKN2A (p21°") and CDKN2B
(p275™). In addition to these effectors, AKT can phosphorylate
PRAS40 and TSC2, 2 negative regulators of mTORCI activity
(Fig. 2)%%% thus linking the PI3K/AKT pathway with the
mTORCI pathway.

The importance of PDK1 and AKT in mediating PI3K down-
stream signaling has been exploited as a suitable node for pharma-
cological inhibiton. Although PDKI inhibitors are being used in
a preclinical setting (for an excellent review see reference”’), many
AKT inhibitors are currently under clinical development.

AKT inhibitors are highly specific and potent, and conse-
quently on-target adverse effects such as severe hyperglycemia
can limit their use. One of the first inhibitors reported to inhibit
AKT is the phospholipid analog perifosine, which inhibits the
PH domain of AKT.*® Despite promising clinical activity in early
studies, perifosine has failed to increase overall survival in meta-
static CRC when administered in combination with capecita-
bine.”” Other inhibitors of AKT are being investigated,
including the allosteric inhibitor MK2206”° and the catalytic
inhibitors GDC-0068,%" AZD5363,%* and GSK690693.%* These
orally bioavailable agents are undergoing different phases of clini-
cal development (Phase I-III) in multiple solid and hematological
malignancies. Of note, most of these trials are being tested in
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Figure 2. The PI3K/AKT pathway. Main transduction signals of the PI3K pathway. Blue phospholipids indicate PIP; second messenger. Arrows indicate
activation while bars represent inhibition. Red bars show pharmacologic targets of the pathway. Images were taken from Servier Medical Art.

combination with other agents such as CDK, RTK, ER, and
MEK inhibitors.

mTOR

mTOR, a 289-kDa serine-threonine protein kinase, is at the
core of the PI3K/AKT pathway and acts as a master integrator of
multiple upstream signals.34 mTOR senses and responds to envi-
ronmental cues such as nutrient availability, stress, and mitogens
to regulate protein synthesis through a highly orchestrated and
complex mechanism.

mTOR was originally identified in the early 1990s>> and was
later shown to form 2 discrete complexes with distinct roles in
the control of cell growth.‘%

mTOR complex 1 (mTORCI1), which contains mTOR, Dep-
tor, Raptor, mLST8, and PRAS40, has been considered a master
regulator of cell growth and metabolism that signals to 4E-bind-
ing protein (4EBP1) and 40S ribosomal protein S6 kinase (S6K),
both of which are important in the physiological control of trans-
lation.”” mTORCI promotes protein synthesis by phosphorylat-
ing 4EBP1, which in turn prevents 4EBP1 from binding to the
eukaryotic initiation factor 4E (eIF4E), enabling eIF4E to initiate
cap-dependent translation. On the other hand, activation of
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S6K1 by mTORCI leads to an increase in mRNA biogenesis
and cap-dependent translation.”” mTORCI has also been shown
to activate RNA Poll transcription and thus rRNA synthesis
through a process involving the protein phosphatase 2A (PP2A)
and the transcription initiation factor IA (TIFIA).%®

The second complex (mTORC2), which is rapamycin-insensi-
tive,>®? consists of at least 6 different proteins. The complex core
is formed by mTOR, Deptor, and mLST8 but, instead of Raptor,
it contains 3 other proteins: rapamycin-insensitive companion of
mTOR (Rictor), mammalian stress-activated protein kinase inter-
acting protein (mSIN1), and protein observed with Rictor-1 (Pro-
tor-1).*° Tt is known that mTORC2 activity responds to growth
factors, but how mTORC2 is regulated upstream and the exact
molecular function of most of its interacting proteins remain elu-
sive. Functionally, mTORC2 regulates organization of the actin
cytoskeleton through the phosphorylation of protein kinase Ca
and also activates AKT through phosphorylation at $473."74!

Although other kinases such as DNA-PK and ATM have been
suggested to phosphorylate AKT at $473,%>% studies in Rictor,
Sinl, and LST8 knockout mice have shown that an intact
mTORC2 complex is required for maximal phosphorylation and

activation of AKT in mouse embryonic fibroblasts.'*#*

€963447-3
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Table 1. Combinations with pan-PI3K inhibitors under clinical development

Drug Target Company Phase Combinations

CH5132799 PI3K Chugai |

CLR457 PI3K Novartis [

GDC-0941 PI3K Genentech I/ Cisplatin, paclitaxel, fulvestrant, erlotinib, bevacizumab, GDC0973.

NVP-BKM120 PI3K Novartis Il Radiotherapy, Chemotherapy (paclitaxel, irinotecan, carboplatin, gemcitabine, etc), RTKi
(Gefitinib, Erlotinib, Cetuximab, lapatinib, rituximab), endocrine therapy (fulvestrant,
abiraterone) imatinib, bevacizumab, olaparib, CDKi (LEE011), MEKi (MEK162, GSK1120212),
everolimus, LDE225, INC280, BRAFi (encorafenib, vemurafinib).

PX-866 PI3K Oncothyreon 7 Docetaxel, cetuximab, vemurafenib.

SF1126 PI3K Semafore |

XL147 PI3K Exelixis 17 Paclitaxel, carboplatin, letrozole, trastuzumab, erlotinib, XL647.

ZSTK474 PI3K Zenyaku Kogyo I/

Genomic Alterations in the Pathway:
PIK3CA and PTEN

PIK3CA, the gene encoding p110a, is the most commonly
mutated gene among the components of the PI3K pathway.*
Although there are 3 main mutation hotspots within the helical
(E545 and E542) and kinase (H1047) domains,*® other muta-
tions can be found across the whole gene. The E542K and
E545K mutations located in the helical domain induce an impor-
tant electrostatic switch in these residues by reversing the ionic
charge. This modifies the interaction of the N-terminal SH2
domain of the regulatory subunit p85 with the helical and kinase
domain of pl110a, comparable to binding at phospho-Y resi-
dues.””*® In the case of the H1047R mutation within the kinase
domain, it has been established that this alteration increases the
kinase activity by inducing a new orientation of the C-terminal
loop toward the plasma membrane, in which the active site has
better access to its substrate PIP,.4%>°

Other mutations include the R39 (R39C and R39H) and the
R88Q mutations that occur in the ABD domain. These muta-
tions are reported to disrupt the interaction between the ABD
and kinase domains of p110a, thus augmenting its activity. In
addition, 2 mutations within the C2 domain, N345L and
E453Q), have been proposed to alter the interaction between this
domain and the iSH2 domain of the regulatory subunit, again
increasing the kinase activity of p110a.*”

Another well-studied alteration that can lead to hyperactiva-
tion of the pathway is loss of function of the tumor suppressor
PTEN.”' Low PTEN phosphatase activity results in increased
levels of PIP; and consequent activation of downstream PI3K
effectors such as AKT and mTORCI (Fig. 2). PTEN is a 55-
kDa enzyme containing, among other structural motifs, a phos-
phatase domain that controls the catalytic activity of the enzyme
and a C2 domain that is responsible for lipid binding.'® Somatic
mutations of PTEN are found throughout the entire gene,
although there is a slightly higher frequency at the R130 residue.
Somatic PTEN mutations are relatively frequent in
endometrial carcinoma and glioblastoma, and PTEN copy num-
ber loss is common in prostate, breast, and ovary cancer and
glioblastoma,”>*?

€963447-4
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PI3K inhibitors

There are currently approximately 200 clinical trials testing
the activity, safety, and efficacy of different PI3K inhibitors
(www.clinicaltrial.gov). The first inhibitors, isolated almost 2
decades ago, were not specific for PI3K and commonly inhibited
other kinases, especially phosphatidylinositol 3-kinase-related
kinases (PIKK) such as mTOR and DNA-PK, which contain
structurally similar active sites.”*

Because PI3K uses ATP as a phosphate donor to phosphorylate
the substrate PIP,, most inhibitors work as competitive ATP mim-
etics.” The first known inhibitor of PI3K, wortmannin, is a fura-
nosteroid  derivative isolated from the fungus Penicillium
wortmanii, which acts as a potent and irreversible pan-PI3K inhib-
itor (ICsp &~ 4.2 nM).”® Unfortunately, this inhibitor also targets
other members of the PIKK family and MAPK. Similarly, viridin,
a natural steroid derived from T7ichoderma viridae, has been
shown to inhibit PI3K in a potent and irreversible manner (ICsqo
~5 nM).”’ Using the structure of the furanosteroid wortmannin
as a pharmacophore, multple drugs have been developed includ-
ing PX-866,”® which is currently in Phase I/II trials. Another natu-
ral product that was shown to inhibit PI3K is the flavonoid
quercetin,”” which was used as a model in the synthesis of
LY294002. Although 1Y294002 has been used for many years as
a tool in the field of PI3K research, it actually has relatively low
potency toward PI3K (ICsy ~ 1.4 uM) and co-inhibits mTOR
and DNA-PK.>® LY294002 has also been used as a model to cre-
ate the B-specific inhibitors TGX-115, TGX-126, TGX-221, and
TGX-286, which were initially designed as antithrombotic agents
because of the involvement of PI3KB in hemostasis.”® Another
molecule, phenylquinazoline, inhibits PI3Kow with an ICsy of
1.3 uM, and is also a common pharmacophore used as a back-
bone to create novel PI3K inhibitors such as PI-103, a potent
(ICsp = 3.6 nM) but not very selective inhibitor of PI3Ka and
B.61%2 The most clinically promising drug derived from a mor-
pholino quinazoline is probably the thienopyrimidine GDC-
0941, which is considered a pan PI3K inhibitor although it prefer-
entally targets PI3Ka (ICsq =~ 3 nM).®® This molecule has shown
good pharmacokinetic properties in animals and humans and is
currently in Phase II trials for metastatic estrogen receptor (ER)-
positive breast cancer and non-small cell lung cancer.
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Another agent derived from the heterocyclic compound qui-
noxalin (benzopyrazine) is XL147,°* which is being tested in
combination with other therapies including chemotherapy and
targeted agents such as erlotinib and trastuzumab.

NVP-BKM120 is a pan-PI3K inhibitor that is currently in
clinical development in multiple combinations. It was originally
derived from the 2-morpholino-6-aminopyridyl-pyrimidine scaf-
fold, based on the structure of PI3Ky.®> This dimorpholino
pyrimidine derivative shows approximate equipotency toward all
of the Class IA isoforms of PI3K and is currently in multiple
Phase II and III trials for breast, prostate, endometrial, glioblas-
toma, and lung cancer, among others.

Although these early inhibitors have shown some promise in
the treatment of cancer, since the elucidation of the PI3K crystal
structure in 20077 the design of PI3K inhibitors has improved,
yielding compounds of higher potency and selectivity. As a result,
isoform-specific PI3K inhibitors that could potentially increase
efficacy while limiting off-target toxicity have been developed
and are now entering the clinic.?

The first reported PI3Ka specific inhibitor was the 2-amino-
thiazole-derivative NVP-BYL719 that inhibits the o isoform with
an ICso =~ 5 nM and shows similar potency toward the mutant
versions H1047R and E545K. In fact, both preclinical and clini-
cal studies have shown that PIK3CA mutations are associated with
response to PI3Ka inhibition with agents like NVP-BYL719,%
7% and this compound is currently being tested in the clinic for
breast, head and neck, and gastrointestinal tumors. Similarly,
INK1117 (also known as MLN-1117) has been reported as a spe-
cific PI3Ka inhibitor and is currently undergoing Phase I trials.””
Recently, a new molecule, GDC-0032, has been reported to be a
PI3KP sparing inhibitor. This agent is a highly potent and selec-
tive inhibitor of PI3Ka and PI3KS (ICs, =~ 0.3 nM and
0.12 nM, respectively), but shows 3-fold greater potency toward
the oncogenic mutants H1047R and E545K. GDC-0032 is cur-
rently in Phase T clinical trials and has shown promising results.®”
Finally, another notable drug is the PI3K8 inhibitor CAL-101, a
phenylquinazolin derivative that selectively inhibits the delta iso-
form of PI3K with an ICsy ~ 70 nM, compared to the other iso-
forms (ICso >1 wM).”> Of note, this compound was the first
PI3K inhibitor to be approved by the US Food and Drug Admin-
istration (FDA) and will be available for the treatment of chronic
lymphocytic leukemia (CLL), small lymphocytic lymphoma
(SLL), and follicular lymphoma (FL). In Table 2, we summarize
the combinations with isoform-specific PI3K inhibitors that are
currently under clinical investigation.

mTORCI inhibitors: rapalogs

Much of our knowledge about mMTORCI comes from studies
that elucidated the mechanism of action of rapamycin, an alloste-
ric inhibitor that directly binds to mTORCI and inhibits down-
stream phosphorylation of its substrates. Specifically, rapamycin
binds to the immunophilin FKB12 to generate a highly specific
complex that binds to the FKBP12-rapamycin-binding (FKB)
domain of mTOR.”’

In contrast to its effects on mTORCI, rapamycin cannot
interact with mTORC2.%” For this reason, mTORCI is known
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as a rapamycin-sensitive complex and mTORC2 as a rapamycin-
insensitive complex. This paradigm, however, may not be
entirely accurate as it has been reported that prolonged treatment
of U937 lymphoma cells and PC3 prostate cancer cells with rapa-
mycin also inhibits mTORC2 activity.”? This decrease in
mTORC?2 activity appears to be sufficient to inhibit AKT signal-
ing.** Thus, rapamycin is considered to be a universal inhibitor
of mTORCI and seems to be a cell-type specific inhibitor of
mTORC2 in a rapamycin time- and dose-dependent manner.

The physicochemical properties of rapamycin are not optimal
for pharmacological development and as a consequence several
analogs termed “rapalogs” have been developed. These analogs,
such as temsirolimus, everolimus, and ridaforolimus, exhibit
higher solubility and better pharmacokinetic properties than
rapamycin.”” Temsirolimus has also been used in combination
with the aromatase inhibitor letrozole in patients with metastatic
breast cancer in a Phase III study although the combination of
drugs did not show a benefit over letrozole alone.”®

Everolimus achieved regulatory approval for use in pancreatic
neuroendocrine tumors based on a Phase III trial in which it pro-
longed progression-free survival when compared to best support-
ive care.”” Another Phase III study demonstrated superiority for
everolimus over placebo in patients with metastatic renal cell car-
cinoma (mRCC) with progression after vascular endothelial
growth factor receptor-tyrosine kinase inhibitor therapy, leading
to approval for this indication.”® Everolimus has also been
approved by the FDA for use in combination with anti-estrogen
therapy in hormone-receptor positive HER2-negative breast can-
cer.”” At the present time, ridaforolimus, formerly known as
deferolimus, has no approved indications. All 3 agents are cur-
rently under investigation across many clinical trials.

Despite a plethora of preclinical data on rapamycin and its
analogs, these molecules have not shown universal antitumor
activity in clinical trials. This may be in part due to an important
limitation of the rapalogs: the paradoxical increase in the AKT
activity resulting from feedback loops triggered by mTORCI1
inhibition. S6K (one of the key substrates of mTOR) inhibits
IRS1, the adaptor protein linking the IGF-1 receptor and PI3K.
This effect leads to a reduction of input into the PI3K pathway
coming from the stimulation of the insulin/IGF-1 receptors. The
inhibition of mTORCI releases the S6K-IRS1-PI3K feedback
inhibitory loop and results in increased AKT activity." Thus,
additional targeting of other key members of the pathway may be
required to overcome the effects of this feedback for maximal effi-
cacy in certain cellular contexts.

mTOR kinase inhibitors

The finding that mTORC2 has a direct role in the activation of
AKT, combined with the limited clinical activity of rapalogs in
many tumors, has led to the development of ATP-competitive
inhibitors of mTOR kinase that potently inhibit both mTORCI
and mTORC2 complexes. Interestingly, these compounds have
been shown to inhibit mMTORCI1 more potently than the rapa-
logs.*>®" For example, the mTOR kinase inhibitor AZD8055
inhibits 4EBP1 phosphorylation more effectively than rapamycin
and also effectively inhibits mTORC2 and AKT S$473

€963447-5
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Table 2. Combinations with isoform-specific PI3K inhibitors under clinical development

Drug Target Company Phase Combinations

CAL-101 p1103 Gilead Sciences /v Chemotherapy (bendamustine), ofatumumab, rituximab, Bcl2 inhibitor (GDC-0199).
GDC-0032 p110a Novartis 17 Chemotherapy (docetaxel, paclitaxel), letrozole, fulvestrant.

GSK2636771 p11083 GlaxoSmithKline |

IPI-145 p1108/y Infinity 1711711 Bendamustine, ofatumumab, rituximab.

MLN1117 p110a Millennium I/lb mTORi (MLN0128)

NVP-BYL719 p110a Novartis 7 Chemotherapy (paclitaxel, gemcitabine, capecitabine), everolimus, RTKi (cetuximab,

LIM716, AMGA479, BGJ398), letrozole, T-DM1, encorafenib, MEK162, Hsp90i (AUY922), CDKi
(LEEO11), PIMi (LGH447).

phosphorylation.®” However, the inhibition of AKT signaling seems
to be transient, as inhibition by AZD8055 causes activation of
RTKs, which in turn induce PI3K signaling and reactivate AKT
activity and signaling.®> Combined inhibition of mTOR kinase and
RTKSs fully abolishes AKT signaling resulting in tumor regression.*
INK128 is another mTORCI1/2 inhibitor for which in vitro
and in vivo data have demonstrated successful inhibition of
mTORCI (S6K and 4EBP1) and mTORC2 (AKT ar $473).%
Interestingly, this agent has also shown marked activity in cell lines
that are resistant to rapamycin and pan-PI3K inhibitors.”" A Phase
I trial testing the activity of this molecule is ongoing in patients
with solid tumors. Other compounds that aim to inhibit both
mTOR complexes and potentially have a more profound antitu-
mor activity than rapalogs are AZD2014, CC-223, and OSI-027.

Combinations of PI3K Inhibitors with RTK Inhibitors

HER2-targeted therapies have produced clinical improve-
ments in patient survival, both in the adjuvant and metastatic set-
ting. However, despite initial responses the emergence of
resistance occurs in the vast majority of patients with metastatic
disease. Activation of the PI3K pathway, either by loss of PTEN
or by the presence of PIK3CA mutations, is perhaps the most
widely accepted mechanism of resistance to anti-HER2 ther-
alpy.84‘88 Activating mutations in P/K3CA occur in approxi-
mately 25-30% of HER2-amplified breast cancers (TCGA) and
may be important for response to HER2-targeted therapies. For
example, introduction of a PIK3CA H1047R activating mutation
in HER2-driven mammary tumors in MMTV/neu transgenic
mice accelerates tumor onset and progression, and generates resis-
tance to anti-HER2 therapy.®” This evidence paved the way to
investigate the efficacy of therapeutic strategies combining anti-
HER2 agents with PI3K inhibitors. In preclinical models, this
strategy proved to be synergistic in cells or tumors resistant to
anti-HER2 therapy.®***?*% In a clinical setting, trastuzumab
in combination with everolimus showed promising antitumor
activity in heavily pretreated patients who had progressed to tras-
tuzumab-based therapy.”>”> Further, in a recent study testing
the effect of the PI3K inhibitor NVP-BKM 120 in a similar pop-
ulation, researchers reported clinical responses in patients with
tumors possessing an activated PI3K pathway.’® Additional trials
testing other PI3K inhibitors in combination with anti-HER2
agents are currently ongoing.
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Interestingly, a recent study highlighted the need to design tri-
ple inhibition strategies to effectively delay and/or avoid tumor
relapse, especially in patients with large tumor burdens.””
Although toxicity remains a limiting factor when translating
these combinatorial therapeutic strategies to patients, concomi-
tant treatment of HER2-driven cancers with synergistic combina-
tions targeting the PI3K/AKT pathway and additional driver
events might render cancer cells vulnerable to efficient eradica-
tion and lead to curative regimes for patients.

Treatment with PI3K/AKT inhibitors leads to upregulation/
activation of RTKs such as EGFR, HER3, and IGFR1 that, in
turn, can limit the antitumor effects of these therapies by increas-
ing PI3K signaling or triggering the activation of other compen-
satory pathways.>*%>% This provides the rationale to test
combinations of PI3K inhibitors with agents that block the activ-
ity of RTKs. Due to space limitations we are unable to list the
large (and increasing) number of preclinical studies conducted in
this regard. Likewise, many clinical trials testing the efficacy of
PI3K inhibitors and anti-RTK agents (including EGFR, HER2,
HER3, FGFR, IGFR, and CD20) have been launched. Details
are available at www.clinicaltrial.gov and are summarized in

Table 1 and Table 2 .

Combinations of PI3K Inhibitors with
Endocrine Therapy

Up to 75% of breast tumors are hormone receptor (HR)-posi-
tive, expressing estrogen receptor (ER), progesterone receptor
(PR), or both. These nuclear receptors are both targets and pre-
dictors of response to anti-estrogen therapy such as selective
estrogen receptor modulators (SERMs), aromatase inhibitors
(Als), or selective estrogen receptor degraders (SERDs). Despite
the fact that HR-positive breast tumors generally have a favorable
prognosis and effective therapies exist, up to one-third of women
diagnosed with this type of cancer will relapse after 5 years of
adjuvant therapy with tamoxifen® and up to 20% of women
treated with adjuvant Als will undergo recurrence 10 years after
the initial diagnosis.'® Several mechanisms of resistance to hor-
mone therapy have been proposedwl; however, a common theme
emerging from many of these studies is the importance of the
activation of growth factor receptors in endocrine resistance.

Given that PI3K is the most frequently altered pathway in
ER™ breast tumors, deregulation of the PI3K pathway through
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activation of upstream receptor tyrosine kinases or mutations in
the downstream effectors as a potential mediator of endocrine
resistance has been one of the main research areas. For example,
it has been described that upregulation of ERBB2 (which signals
mainly through the PI3K pathway) mediates resistance to anti-
estrogen therapy'*>'% thus establishing the rationale for the
combination of anti-estrogen and anti-HER2 therapy.104 How-
ever, constitutive activation of PI3K does not seem to confer this
resistant phenotype.'®'%” Despite the lack of a correlation
between response to anti-estrogen therapy and PI3K alterations,
there is preclinical evidence pointing to the benefit of a combina-
tion of inhibitors of ER and the PI3K pathway.'*®'% In fact, we
have reported that PI3K pathway inhibition upregulates ER tran-
scriptional activity and increases cell survival dependency on ER,
which translates into a synergism between PI3K inhibitors and
ER degraders with increased tumor control.!'® Furthermore, the
Bolero-2 trial highlighted that inhibiting both mTOR and ER
signaling with the combination of everolimus and exemestane
has a superior effect in terms of progression-free survival.”” Also,
early-phase clinical trials introducing novel drugs that directly
target PI3K have demonstrated that combination strategies have
an excellent response rate in selected patients.'' "' '?

The PI3K and androgen signaling axes are also critical drivers
of the pathogenesis of prostate cancer and the 2 most commonly
activated pathways in this disease. Mutation or deletion of PTEN
and amplification of PIK3CA are 2 of the most common genetic
aberrations observed in prostate cancer genomics studies,'®!'*
and virtually all untreated primary prostate cancers initially
respond to androgen deprivation therapy. Further, it has been
demonstrated that these 2 signaling cascades reciprocally regulate
one another, such that inhibition of one pathway induces activa-
tion of the other.''® Thus, there is great interest in targeting these
pathways simultaneously in prostate cancer. PI3K pathway inhib-
itors and androgen-targeted therapies have shown promising

115,116

activity in preclinical studies, and several early-phase clini-

cal trials are ongoing.

Dual PI3K/mTOR blockade

An interest in targeting multiple important components in the
PI3K/AKT/mTOR pathway has encouraged the development of
dual inhibitors that might suppress the growth, proliferation, and
survival of cancer cells. The activity of these compounds differs
from that of rapalogs or dual mTOR inhibitors, as they are able
to block both mTOR complexes in addition to the PI3K iso-
forms in an ATP-competitive manner. Several mTOR/PI3K
dual inhibitors, such as SF1126, NVP-BEZ235, XL765, GDC-
0980, PF-04691502, PKI-587, GSK2126458, and PWT3359,
have shown activity in preclinical models and are in early-stage
clinical trials. For example, NVP-BEZ235 has been reported to
inhibit tumor growth in preclinical models of prostate, breast,
pancreatic, and renal cancers, multiple myeloma, and sarco-
mas.'"” Other studies have shown that breast cancer cell lines
with HER2 amplification and/or PIK3CA mutations are highly
sensitive to NVP-BEZ235.°° These and other findings have
allowed NVP-BEZ235 to enter Phase I/II clinical trials in

. . . . . 11
patients with advanced solid tumors, including breast cancer.""”
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XL765 is a PI3K/mTOR inhibitor that showed pathway inhibi-
tion and a reduction in cell proliferation in a Phase I dose-escala-
tion study of patients with solid tumors.''® Another dual PI3K/
mTOR inhibitor, GDC-0980, has demonstrated broad preclini-
cal activity in breast, ovarian, lung, and prostate cancer mod-
els.""? Tt has also been shown to be active against tumor cells
bearing mutations in PI3K, PTEN, or KRAS'*® and is currently
in Phase I clinical development.

Recent work has demonstrated that mTORCI inhibition is
required for sensitivity to pl10a inhibitors in PIK3CA-mutant
breast cancer.”” This study demonstrated that breast cancer cell
lines and patient tumors that are resistant to the PI3K inhibitor
NVP-BYL719 have active mTORCI signaling. Thus, sustained
mTORCI activation may limit the effects of NVP-BYL719 on
tumor growth. This hypothesis was confirmed by the demonstra-
tion that adding everolimus to NVP-BYL719 resulted in reversal
of resistance both iz vitro and in vive.”’

Additionally, work from our laboratory showed that progres-
sive loss of PTEN leads to clinical resistance to the PI3Kea inhibi-
tor NVP-BYL719. Specifically, loss of PTEN in NVP-BYL719-
sensitive cell lines and in patients that progress to this agent leads
to resistance to PI3Ka inhibition. Since PTEN-deficient preclini-
cal models mostly rely on the p110B subunit of the PI3K holoen-
zyme, concomitant inhibition of p110a and p110f isoforms of
PI3K resensitizes the cells to NVP-BYL719."*!

Combination of PI3K and MEK inhibitors

The RAS/RAF/MEK/ERK pathway is frequently dysregulated
in human cancer and alterations in this pathway have been found
to lead to tumorigenesis and resistance to several therapies. The
PIBK/AKT/mTOR and RAS/RAF/MEK/ERK pathways are
known to interact at muldple levels. Examples of this crosstalk
include direct activation of PI3K by RAS via its interaction with
the catalytic subunit of PI3K'** and phosphorylation of TSC2 by
ERK that suppresses TSC2 function and promotes activation of
mTORCI1."*> Moreover, the 90-kDa ribosomal S6 kinase (RSK),
which lies downstream of the RAS-ERK pathway, was found to
phosphorylate TSC2 at Ser1798 and inactivate its tumor suppres-
sor function leading to mTORCI signaling and increased transla-
tion.””* RSK was also reported to phosphorylate Raptor,
providing another link between RSK and the mTOR pathway.'*®

The interaction between the PI3K/AKT/mTOR and RAS/
RAF/MEK/ERK pathways may explain the modest single-agent
activity of agents targeting one of these pathways. Thus, to
achieve optimal anticancer effects, dual blockade of these path-
ways may be necessary. Indeed, studies of dual pharmacological
inhibition of these pathways have shown that combination treat-
ment increases antiproliferative activity. For example, the dual
pan-PI3K and mTOR inhibitor NVP-BEZ235 in combination
with a MEK inhibitor show successful synergy in shrinking
KRAS-mutant lung cancers or EGFR-mutant lung cancers.'**"?’
Furthermore, targeting of PI3K/mTOR in combination with
MEK inhibitors was shown to be necessary to effectively inhibit
growth of NRAS-mutant melanoma cells 77 vitro and in vivo.'*®
Several Phase I and II clinical trials examining PI3K inhibitors
plus MEK inhibitors in patients with advanced solid tumors are

€963447-7



Downloaded by [Ben Gurion University of the Negev] at 01:23 03 January 2016

currently undergoing or complete129 (Table 1). Examples
include studies of a MEK inhibitor (MEK162) plus a PI3K
inhibitor (BKM120 or BYL719) in adult patients with advanced
solid tumors and studies of a MEK inhibitor (GSK1120212) in
combination with a AKT inhibitor (GSK2110183) in patients
with solid tumors and multiple myeloma (www.clinicaltrials.gov)

(Table 1).

Combination of PI3K inhibitors with DNA damaging
agents

Aberrations in DNA damage repair (DDR) and cell cycle
checkpoint proteins are present in nearly all cancers, subverting
standard cell cycle arrest mechanisms and allowing genomic aber-
rations to persist unrepaired. Furthermore, DNA damaging ther-
apies such as chemotherapy and radiotherapy are cornerstones of
cancer therapy and are administered to the vast majority of cancer
patients at some point during their disease course. The DNA
damage signaling and PI3K signaling networks intersect at muldi-
ple nodes,** and several preclinical'®' 3% and clinical'® studies
have supported the notion that DNA damage activates PI3K/
AKT pathway signaling. Further, activation of PI3K signaling
has been implicated in the promotion of chemo- and radioresist-
ance.'?® 138 Therefore, it has been hypothesized that combining
therapies targeting the PI3K-AKT signaling axis with standard
DNA damaging therapies in PI3K-driven tumors may induce
synergistic cancer cell killing.

Perhaps the most widely studied PI3K signaling protein
involved in the DDR is AKT. Numerous studies have demon-
strated that AKT is phosphorylated on S473 within minutes of
DNA damage.42’139’140 Furthermore, AKT S473, but not AKT
T308, accumulates at foci of DNA damage.43’139 However, the
exact mechanism of AKT activation following DNA damage and
its specific role in the DNA repair cascade is controversial and
may vary depending on the cell’s genetic and epigenetic profile.
Several studies have demonstrated that the phosphorylation of
AKT on S473 is dependent on DNA-PK. 140141 O the other
hand, other studies have suggested that induction of AKT S473
following radiation is independent of both DNA-PK and PI3K
signaling, but instead is dependent on the activation of ATM."
Another possible mechanism of AKT activation is provided by
multiple studies demonstrating that radiation can induce activa-
tion of all 4 ErbB receptors, and therefore downstream PI3K sig-
naling, in a ligand-independent manner,'**'*?

Given the evidence that AKT is activated by DNA damage,
several studies have investigated the specific role of AKT in the
DDR. In one study, AKT1 was found to form a complex with
DNA-PKcs following DNA damage, resulting in enhanced acti-
vation and autophosphorylation of DNA-PKecs at $2056, thus
allowing DNA-PKcs to dissociate from sites of DNA damage
and other critical downstream DNA damage repair proteins to
access the DNA damage sites.'** Additionally, AKT phosphory-
lates multiple downstream targets, and several of these have been
shown to participate in the DDR. For example, one study dem-
onstrated that following DNA damage AKT2 mediates phos-
phorylation and inhibition of GSK-38, an enzyme important for
phosphorylating and activating the p53 inhibitor MDM2.'%
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Further, AKT2 knockdown (but not PI3K knockdown)
markedly reduced p53 accumulation in response to radiation.' %’
AKT-mediated inhibition of GSK-3 has been also shown to
upregulate expression of MRE11, a component of that MRN
complex that is one of the earliest proteins recruited to sites of
DNA double-strand breaks.'*’

However, the relationship between AKT and DNA damage
signaling is complex, and many other targets that are inhibited
by AKT actually enhance DNA damage checkpoints and repair.
For example, FOXO3A has been shown to directly associate with
ATM, p53, and Chk2, enhancing the activation of these pro-
teins, " **'%” and to regulate both the G1'® and G2/M'* DNA
damage checkpoints. Thus, FOXO3A inactivation through AKT
phosphorylation might be expected to impair the DDR. Further,
AKT has also been shown to inhibit Chk1'° and Weel'!
through inhibitory phosphorylations on S280 and S642, respec-
tively, thus promoting progression through the cell cycle. It is
unclear, therefore, whether hyperactivation of AKT signaling can
abrogate the ability of cells to arrest at the G2/M checkpoint and
repair DNA damage prior to mitosis.

Despite these complexities, most preclinical evidence suggests
that the net effect of AKT loss is increased sensitivity to DNA
damaging agents. For example, AKT ™/~ mice exhibit decreased
survival following total body irradiation compared with their
AKT-proficient littermates.”> Similarly, AKT™'~ thymocytes
are more susceptible to irradiation-induced apoptosis than wild-
type thymocytes.'”* Several studies have also shown that AKT1
knockdown sensitizes cancer cells to radiotherapy,'3%13%145:153

Given the extensive evidence that PI3K signaling is induced
following DNA damage, for many years there has been interest
in using PI3K inhibitors to sensitize to DNA damaging therapies.
In fact, multiple studies have demonstrated that pharmacologic
inhibitors of the PI3K pathway are capable of sensitizing cancer
cells to DNA damaging therapies in wvitro and in
vivg 8313 IALISAI56 However, the vast majority of these studies
relied heavily on PI3K pathway inhibitors like LY294002, wort-
mannin, PI103, and especially NVP-BEZ235, which have signif-
icant activity against DNA-PK and lower activity against ATM
and ATR."””"*® In fact, in a study from Kevan Shokat’s group,
inhibitors of PI3K were found to frequently inhibit DNA-PK,
and p110a was found to cluster with DNA-PK in target space by
structural activity relationship analysis despite sharing limiting
sequence homology.'*® Additionally, 5 of the 6 chemotypes that
inhibited p110a with an ICsy lower than 5 uM also potently
inhibited DNA-PK in this study. Given that DNA-PK plays a
central role in the DDR, particularly in non-homologous end
joining, caution should be used when drawing conclusions from
studies that rely predominantly on these inhibitors to demon-
strate enhanced efficacy from PI3K pathway inhibition and
DNA damaging agents compared to either alone. Studies using
more selective pl10a inhibitors with limited activity against
DNA-PK, such as NVP-BYL719 and GDC-0032, will help
define the relationship between PI3K inhibition and sensitivity
to DNA damaging agents.

Two recent studies have demonstrated a direct role for PI3K in
homologous recombination via regulation of BRCA1 expression,159
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thereby inhibiting recruitment of Rad51 to foci of DNA damage'®

in patients with triple-negative breast cancer. These findings have
led to a Phase I clinical trial combining the pan-PI3K inhibitor
NVP-BKM120 and the PARP inhibitor olaparib in patients with
triple-negative breast cancer or high-grade serous ovarian cancer.'®’
However, in addition to the role of p110a in the DNA damage
response, activation of p110p by DNA damage seems to play a criti-
cal role in recognition of DNA double-strand breaks and recruit-
ment of NBS1 to sites of DNA damage.]62 Loss of p110p leads to
impaired recruitment of downstream DNA damage repair media-
tors such as ATM, RAD17, y-H2AX, and 53BP."®*

In contrast to AKT, several reports have shown that
mTORCI signaling is actually downregulated as a result of
DNA d;almage.IGMG5 Oxidative stress was shown to downregulate
mTORCI signaling by activating ATM, leading to a phosphory-
lation chain resulting in sequential activation of LKB1, AMPK,
and finally TSC2.'® Given that DNA damage is also a major
regulator of ATM signaling, the mechanism of DNA damage-
induced downregulation of mMTORCI signaling may be similar.
This suggests that both AKT and ATM signaling may converge
on TSC2, and that mMTORCI1 output may depend on the relative
contribution of both signals.

In summary, the relationship between DNA damage repair
and PI3K signaling is complex and bidirectional, with each net-
work influencing the other in multiple ways. However, the bulk
of evidence supports the notion that DNA damage enhances
AKT activation, thereby leading to activation of a signaling net-
work that generally promotes survival following DNA damaging
therapies like radiation and chemotherapy. Although the use of
selective PI3K inhibitors to enhance the efficacy of DNA damag-
ing agents represents a promising approach for some cancers, it is
imperative to define molecular predictors for which patients are
most likely to benefit from this approach in order to maximize
the chance that this approach will be successful in the clinic.

Concluding Remarks

Although the precise biology and the mechanisms of oncoge-
nicity of the PI3K/AKT pathway are still under investigation,

this signaling cascade is an attractive target for cancer therapy
because of the high frequency of aberrations seen across a wide
spectrum of cancers. Nevertheless, PI3K inhibitors have limited
efficacy when used as a single agent, in part due to the activation
of compensatory pathways. Thus, combinatorial strategies seem
to be the best approach in order to obtain the maximal therapeu-
tic advantage from these agents.

In this review, we have discussed what we believe are some of
the most promising strategies for combinatorial therapy with
PI3K inhibitors. However, it should be mentioned that this field
is continuously evolving with the development and testing of
new combinations that we have not specifically discussed. Such
approaches include cosuppression of cyclin-dependent kin-
ases, '°>1%7 Smoothened,'®® BCL2,'*” histone deacetylase,wo
Janus kinase,'”" heat shock protein 90,'”% and many others.

Ultimately, given the intra- and inter-tumoral molecular het-
erogeneity underlying cancer, a single specific combinatorial strat-
egy is unlikely to be uniformly effective for all patients. Thus,
understanding which tumors are most prone to respond to specific
combinations of PI3K inhibitors with other targeted agents will be
critical to their successful implementation in the clinic.
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